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ABSTRACT asserted as incomplete2. However, if a list is not asserted as incom-

Current RDF knowledge bases (KBs) are highly incomplete. This in-
completeness is a serious problem both for data users and producers.
Users do not have guarantees that queries that are run on a KB deliver
complete results. Data producers, on the other hand, are blind about
the parts of the KB that are incomplete. Yet, completeness informa-
tion management is poorly supported in the Semantic Web. No RDF
storage engine supports reasoning with completeness statements.
Moreover, SPARQL cannot express completeness constraints for
queries. Motivated by these observations, this paper offers a vision
on completeness-aware RDF querying. Our vision includes (1) the
sketch of a method to reason about completeness in RDF knowledge
bases, (2) two approaches to represent completeness information for
SPARQL queries, and (3) an extension for the SPARQL language to
express completeness constraints in queries.

1 INTRODUCTION

In the past 15 years we have seen a steady increase in the amount
of available semantic data on the Web!. Semantic data is normally
modeled in RDF [12] as facts (subject, relation, object). We call a
collection of RDF facts a knowledge base (KB). Current KBs suffer
from quality problems. Those problems include false and missing in-
formation. While semantic data providers have traditionally focused
on the correctness of the information, the dimension of completeness
has only recently attracted attention of the research community [1-
3, 7, 8]. Nevertheless, existing KBs are highly incomplete. As of
2015, Wikidata [11], for example, knows the father of only 2% of
the people in its records. In [9] the authors show that between 69%
and 99% of the entities in popular KBs lack at least one property
that other entities in the same class have. Moreover, due to the open-
world assumption, it is sometimes impossible to detect where the
information is missing: a person without a spouse in the KB may
be truly single or married to an unknown person. These scenarios
are problematic both for data users and data producers. Data users
do not have guarantees about the completeness of query results on
KBs. In contrast, data producers cannot know which parts of the KB
should be populated.

There have been, though, some efforts to alleviate this problem.
At the time of writing, Wikipedia contains more than 2900 lists

! https://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/
DataSets offers an extensive list of publicly available datasets.
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plete, it does not necessarily mean that the list is complete. Also,
Wikidata [11] defines no-value statements: assertions specifying that
an entity does not have values for a certain attribute. Still, these
assertions have a limited scope, e.g., they cannot tell us if a person
with a known citizenship has more citizenships in real life. The
work in [3] studies methods to predict completeness statements in
YAGO [10] and Wikidata [11]. Yet, they can only predict complete-
ness for the list of objects of a given subject and relation. Despite
these efforts, the dimension of completeness remains significantly
unexplored. First, the available completeness assertions are defined
for simple queries, e.g., lists with simple definitions such as the “list
of Nobel laurates”. A KB may be incomplete for this list and still
complete for the—more complex to describe—list of Nobel laurates
in Physics. Second, we cannot use those completeness assertions to
provide completeness guarantees for arbitrary queries, because no
RDF storage engine nowadays supports inference with complete-
ness statements. If a KB contains completeness statements about
the list of Nobel Prize laurates of each category, then it follows that
the KB is complete for the entire set of Nobel laurates. Nowadays,
such a reasoning is not possible on semantic data—albeit formal-
ized in [1, 2, 6]. Third, SPARQL does not provide a way to express
completeness constraints on RDF data, i.e., it is not possible to write
queries for regions of the data asserted as complete. Thus, in this
paper we present a vision of a Semantic Web that is aware of its
incompleteness. Our vision consists of three points: (1) a vision for
reasoning with completeness statements, (2) two representations for
completeness statements in RDF data, and (3) an extension for the
SPARQL query language to support completeness constraints.

The remainder of this paper is structured as follows. In Sec. 2,
we describe the basic concepts that are relevant to our vision of
completeness. Sec. 3 elaborates on our ideas on reasoning with
completeness. Sec. 4 describes our proposals for the representation
of completeness statements for RDF. Sec. 5 describes how to ex-
tend SPARQL to support completeness constraints. Finally, Sec. 6
concludes the paper.

2 PRELIMINARIES

2.1 RDF Knowledge Bases and SPARQL

We assume that the reader is familiar with RDF [12] and
SPARQL [13]. An RDF knowledge base (KB) is a collection of
facts in the form of triples (s, r,0) where s is the subject, r is the
relation, and o is the object, e.g., (Denmark, capital, Copenhagen).
SPARQL [13] is designated by the W3C as standard for querying
RDF data. In this paper we focus on a subset of the standard, namely
the set of SPARQL conjunctive queries with aggregates. For space
reasons, we do not provide a rigorous definition of SPARQL queries;
instead we refer to the definition used in [5].

https:/fis.gd/j2eb9f
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subject relation object

Barack Obama rdf:itype  Politician
Barack Obama citizenOf USA
Angelina Jolie  citizenOf USA

Table 1: Example KB

2.2 Completeness in KBs

In line with previous work on completeness in RDF data [1, 3], we
define the completeness of a KB with respect to queries. We say a
KB %K is complete w.r.t. a query g, if q delivers at least the same
results in K as in K™, i.e., ¢(K) 2 q(K*). Here, K* denotes a
hypothetical complete KB that knows all the results of ¢ that hold in
the real world. For example, given the SPARQL query g “SELECT
?country WHERE { Spanish officialLangln ?country}”, we say a
KB K is complete w.r.t this query if K knows all the countries in
the world where Spanish is an official language.

2.3 Completeness oracles

Based on the work presented in [3], we define a completeness oracle
(g, %K) as a boolean function. The function returns true whenever
the oracle believes that the query g is complete in K. In this work, we
do not distinguish between “incomplete” or “unknown completeness
status”. We omit K from the arguments whenever it is clear that we
are talking about a single KB. In [3] the authors propose and study
a set of completeness oracles for queries of the form gq: SELECT
?0 WHERE { s r 70 }. These oracles predict whether a KB knows
all the object values of a given subject-relation pair (s, ) . We call
them subject-relation oracles. For simplicity, we rewrite w(q) as
w(s,r). As an example, consider the KB K depicted in Table 1 and
the following subject-relation oracles:

pea(s,r):do:(s,r,0p e K pol(s,r) : (s, is, Politiciany € K

The pca oracle implements the Partial Completeness Assumption
(PCA) [4], which states that a pair (s, r) is complete if the KB knows
at least one object value for the pair. From this definition it fo-
llows that pca(B. Obama, citizenOf) and pca(A. Jolie, citizenOf)
evaluate to true. The pol oracle states that entities in the class of
politicians are always complete in their attributes. This implies that
pol(B. Obama, citizenOf) evaluates to true, whereas pol(A. Jolie,
citizenOf) evaluates to false. We highlight that those oracles can
make mistakes, e.g., pca is wrong for Angelina Jolie since the KB
misses the fact that Angelina is also a citizen of Cambodia. If Q is
the golden oracle that knows the completeness of all subject-relation
queries, precision and recall for a subject-relation oracle w w.r.t a
relation r are defined as follows:

hits, B hits,
recall, (w) = B 006.7)

Here hits, = #s : w(s,r) A Q(s, r) is the number of entities for which
o predicted completeness correctly. For Table 1, pca has precision
0.5 and recall 1 for the relation citizenOf, since pca errs for Angelina
Jolie but is correct for all the actual complete entities in the KB
(Obama). Both precision and recall for pol are equal to 1.

A domain oracle is a completeness oracle that asserts the com-
pleteness of queries of the form: SELECT DISTINCT (?s 120)
WHERE {?s r ?0}. That is, the oracle evaluates to true if the KB
knows all the subjects (or objects) that occur with a given relation r

(€]

recision, (w) = —————
p r(@) #s: w(s,r)
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in the real world. We denote domain oracles by ws and w, depending
on whether the projection variable is the subject or the object of the
triple pattern. For example, if w, (isCitizenOf ) evaluates to true, then
according to w, the KB knows at least one citizenOf fact for every
country in the world. For simplicity, we write wo(r) as ws(r™1),
where r~1 is r’s inverse, i.e., the relation obtained by swapping the
arguments of r in the KB, e.g., isCitizenOf ~! = hasCitizen.

It is easy to see that domain completeness does not entail subject-
relation completeness. If a KB knows all the subjects for the relation
isCitizenOf (all people in the world), it may still miss one of the
nationalities of a particular person. For this reason, these two types
of oracles can be used as complementary building blocks to infer
completeness for more complex queries, as we show next.

3 REASONING WITH COMPLETENESS
ORACLES

In our vision, subject-relation and domain oracles are used to con-
struct composite oracles that can provide completeness guarantees
for arbitrary SPARQL conjunctive queries under bag semantics.

3.1 Composite Oracles

Consider the completeness oracles w, ws, and the query q’: SELECT
?cnt WHERE { ?cnt officialLang ?1 . ?l family Romance}. In the
absence of a completeness statement tailored for ¢’, we can use
completeness oracles to infer the completeness of ¢’ by defining a
composite oracle o’ as follows:

w’ = w(Romance, family™! w(l, officialLang™")

M
) I:family(l, Romance)

In other words, «” will mark g’ as complete, if (1) the KB is complete
in the list of languages of the Romance family, and (2) for each of
those languages the KB is complete in the list of countries where
the language has official status. Now imagine somebody devised an
oracle wy, that trivially returns true for this query, based on manual
checking of the result of ¢’. If the list of romance languages in the
KB misses Ligurian, o’ will return false for ¢’ even though this
particular query is complete. To see this, recall that Ligurian is not
official in any country. This scenario tells us that w’ may have too
many requirements to evaluate to true, and is therefore not tight. In
the following, we formalize this notion for completeness oracles.

Definition 3.1. Tightness of completeness oracles. Given two
completeness oracles w; and wy, and a query g, we say that g is
tighter than w; for q (denoted as w1 <q wy ) if

YK :01(q,K) Awz(q, K) : AK' ¢ K : w1(q, K') A =w2(q, K”)

According to this definition, given two completeness oracles w;
and w2 and a query g, we say that w; is tighter than w; if for each
KB K where both oracles evaluate to true, w; can still evaluate to
true in a less populated version of %, which we denote by K.

3.2 Automatic Oracle Composition

In the following we sketch an algorithm that can infer complete-
ness for SPARQL conjunctive queries under bag semantics. The
algorithm is based on compositions of subject-relation and domain
oracles. We describe the algorithm in a bottom-up fashion by first
defining composite oracles for simple queries with one projection
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variable. Those oracles are used as building blocks to construct com-
pleteness oracles for arbitrary SPARQL conjunctive queries with one
projection variable. We also discuss the applicability of the method
for queries with aggregations and queries under set semantics. We
leave as future work the support for multiple projection variables.

Consider the subject-relation and domain oracles w, ws defined
for a KB K, and a SPARQL query g of the form SELECT ?v
WHERE { G, }, where G, is a basic graph pattern [5]. We denote
by complete(q, (v, ws), K') the composite oracle constructed by our
method. We observe that for queries with a single selective triple pat-
tern of the form t = (?v,r,C)ort = (C, r, ?v) (C is a constant value),
complete(q, {w, ws), K) evaluates to either w(C, 1) or w(C,r). In
the following we describe how to implement complete(q, {(w, ws), K)
for different types of simple SPARQL conjunctive queries.

Selective star patterns. A selective star pattern S consists of a set
of selective triple patterns. The completeness of a query consisting
of a single selective star pattern can be evaluated as

complete(q, (w, ws), K) = /\tes complete(q;,{w, ws), )
Here, q; is a query that contains only the selective triple pattern t.

Non-selective triple patterns. For a query q with projection
variable ?v and a single non-selective triple pattern of the form
t =(?v,r,?v"), completeness can be assessed with the expression:

complete(q, (w, ws), K) = ws(r) A (/\Sw(s, r))
If t = (7', r, 70), we replace r with r 1.

Subgraph patterns. We define a subgraph pattern p as a set of
triple patterns containing a single non-selective triple pattern ¢ on
the projection variable ?v, which we call the head, and a transitively
connected set of triple patterns not containing ?v, known as the tail.
One example is p ={(?v, citizenOf, ?country), (?country, hasCity,
?city), (?city, timeZone, UTC-5) }. The completeness of a query g,
with projection variable ?v consisting of one subgraph pattern p can
be evaluated with the following formula:

complete(qp, {w, ws), K) = complete(qyq1, (@, @s)), K) A

(/\eegmil(«}() complete(qy, (w, ws), 7())

In this formula, ¢ is a version of the query such that it contains
only the head triple pattern ¢, and the head non-projection variable
(?country in our example) has been instantiated with value e. On the
other hand, q,,;; denotes our original query on the tail of the subgraph
pattern but with ?country as projection variable. Subgraph patterns
cover queries with at most one path-shaped pattern starting at the
projection variable, plus arbitrary patterns on the non-projection vari-
ables. Therefore, any connected basic graph pattern can be expressed
as a combination of multiple subgraph patterns and one (optional)
selective star pattern on the projection variable.

Arbitrary conjunctive queries. Algorithm 1 describes an oracle to
answer completeness for conjunctive queries with an arbitrary basic
graph pattern and with one selection variable. The algorithm takes
as input the query g with projection variable ?v, a subject-relation
oracle w, a domain oracle wg, and a KB K. The algorithm starts by
identifying the selective star pattern S containing ?v in the query (line
1). If such a pattern exists, the algorithm evaluates its completeness
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according to the oracles (line 4). If the oracles do not evaluate to
false, the algorithm continues by identifying all subgraph patterns
starting at the projection variable. This is done as follows. First, the
algorithm gathers all the non-selective triple patterns (line 6) that
contain the projection variable ?v, i.e., the heads of the subgraph
patterns. Then, for each head triple pattern t = (?v,r,?v”"), the
algorithm identifies the tail (line 9) and constructs a new select query
on the complete subgraph pattern (line 10). The algorithm computes
the completeness of the query as the conjunction of the completeness
assessments of every subgraph pattern (line 12). For example, given a
query with projection variable ?v and triple patterns {(?v, profession,
scientist)y, (?v, citizenOf, ?country), {?country, hasCity, ?city), (?city,
timeZone, UTC-5)}, Algorithm 1 builds an oracle based on the
completeness of the selective star pattern {{?v, profession, scientist)}
and the subgraph pattern with head (?v, citizenOf, ?country) and tail
{(?country, hasCity, ?city), {?city, timeZone, UTC-5)}.

Algorithm 1: isComplete

Input: q : SELECT ?v WHERE { T }, oracles (w, ws), KB K
Output: true or false

1 S:={teT:t=(C,r,?20)Vt={v,rC)}

2 if S # 0 then

3 qs := SELECT ?v WHERE { S }

4 if =isComplete(qs, {w, ws), K) then

5 L return false

6 N={teT:t=02,r,20)Vit=0,r 20)}

7 C:={}

8 fort € N do

9 p:={t' € T-(SUN) : ¢t transitively connected to ¢}

10 qp = SELECT ?v WHERE { p U {t} }
1 C:=CU{qp}

12 return /\qpec isComplete(qp, (@, ws), K)

Tightness of our methods. It is easy to see that Algorithm 1 does
not produce tight oracles. Given the query that asks for the bag of
countries with official romance languages in Section 3.1, Algorithm 1
returns the oracle ’, which can lead to false negatives in highly
incomplete KBs, as we showed. While our method could be applied
to queries with set semantics, the produced oracles are even less tight
in this case. For example, consider the set-semantics version of our
example query and the oracle «” from Section 3.1. If a KB misses the
single fact that Spanish is an official language of Equatorial Guinea,
the oracle w’” will return false, even though Equatorial Guinea will
appear in the list thanks to French. If a query contains an aggregate
term of the form f(?v) in the projection, Algorithm 1 could be
applied to the query without the aggregate, however with potential
false negatives.

4 REPRESENTING COMPLETENESS
STATEMENTS

In this section we propose two conceptual representations for com-
pleteness oracles: extensional and intensional.

4.1 Extensional Approach

Under the extensional representation, a completeness oracle is a
collection of completeness statements, that is, assertions about the
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pcaFuncRelation rdf:type
pcaFuncRelation formula

SubjectRelationComplOracle
"A (s, r), K :(s,r,0) € K"

Figure 1: The completeness oracle based on the Partial Com-
pleteness Assumption (PCA) described as an RDF resource.

completeness of queries on an RDF KB. In [1], the authors use RDF
to model completeness statements for SPARQL conjunctive queries.
In an extensional representation, an oracle w could be a named graph
with multiple completeness statements. A call to the oracle, e.g.,
w(q, K) will thus trigger a SPARQL ASK query on the named graph
associated to w. This query asks for the existence of a statement for
query q in the graph.

4.2 Intensional Approach

The extensional approach can become extremely verbose for subject-
relation oracles. Consider the PCA oracle defined in Section 2.3.
This oracle has 100% precision for functional relations such as place
of birth. These are relations where each subject has at most one
object value. Under the extensional approach, each person with
known place of birth will produce a completeness statement. In
contrast, under an intensional representation, the PCA oracle can be
defined as a lambda function on pairs subject-relation as Figure 1
shows. The variable r in the formula could be replaced with the
name of any functional relation. A call to a subject-relation oracle
(s, r) under the intensional approach triggers a call to the lambda
function of the oracle with arguments (s, r). The lambda approach
for completeness oracles can easily be implemented for some of the
subject-relation oracles defined in [3]. In contrast, it is not portable
to arbitrary conjunctive queries. Nonetheless, both the intensional
and the extensional could be used in combination.

5 COMPLETENESS-AWARE QUERYING

Due to the open-world nature of Semantic Web data, RDF does
not provide a native way to handle completeness information. This
problem extends directly to the SPARQL query language [13].
Imagine a user who needs to retrieve the total number of Spanish
speakers per state in USA by aggregating the number of Spanish
speakers in every county of the state. Furthermore, assume the user
wants the results for states with complete information, that is, those
states where the complete list of counties as well as the total number
of Spanish speakers is known. Such a query cannot be expressed in
SPARQL. We therefore propose to extend the language to support
completeness constraints like the following:

SELECT ?state sum(?nspeak) WHERE {
?county inState ?state . ?county spanishSpeakers ?nspeak
} GROUP BY 7?state HAVING (complete( ?nspeak))

In this example complete(?v1, . . .?vp,) is a boolean aggregation func-
tion applied to each group of counts. For each binding of grouping
variables (those in the GROUP BY clause), this construct evaluates
completeness on the bindings of ?v1, . ..?v,,. For example, when
the grouping variable ’state binds to Texas, the evaluation of the
aggregation function resorts to a completeness oracle to assess the
intermediate query “SELECT complete(?nspeak) WHERE { ?county
inState Texas . ?county spanishSpeakers ?nspeak . }”. In this case
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the complete function is applied to the implicit singleton group that
contains all the bindings of the variable nspeak for counties in Texas.
The function returns true whether this set of values is complete ac-
cording to its underlying oracle. Such an oracle could be generated
using Algorithm 1, for example. Finally, RDF query engines could
provide a confidence score for completeness answers. This score
would depend on the precision of the underlying oracles used to
compute the answer.

6 CONCLUSION

We have presented a vision on enabling completeness-aware query-
ing on RDF data. Our vision comprises a framework to reason about
completeness based on completeness oracles. This includes a basic
method to infer completeness from simple oracles. We also have
presented a vision on how to model completeness information for
RDF and integrate completeness constraints into the SPARQL lan-
guage. Our ideas focus on the set of SPARQL conjunctive queries
with aggregation. In this paper, we have not discussed other inter-
esting ideas, such as the management of explicit incompleteness
information, i.e., in the form of incompleteness oracles, or optimal
oracle selection in the presence of multiple oracles with different
values of recall. Nevertheless, we believe that our vision is a step
forward towards a completeness-aware Semantic Web, and we hope
it motivates further research in the area of completeness in RDF.
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